The following lists are brief guides to big names in the fields of bio-inspired robotics, neuromechanical modeling, and experimental neuroscience. These lists are only meant to get you started. There are many more researchers in the field who do relevant work. I highly recommend you look up their lab website or Google Scholar page, download a handful of papers that are highly cited or relevant to your work, read them carefully, and take notes on what you read and how they relate to one another. This will give you a basic understanding of what the state of the art is, what questions are outstanding, and how your research can contribute.
The following also includes a list of review papers that may help introduce you to these fields. Review papers primarily synthesize ideas from the literature without performing original research. They can be very helpful for getting started in a particular area of research. All these manuscripts that are relevant to our research, but those that are highly relevant are labeled *, and those that are exceptionally relevant are labeled **.
Campaniform sensilla, cockroach and stick insect locomotion **[43,44]
Review papers
1. Ayers, J. L. Underwater vehicles based on biological intelligence. Mechanical Engineering138, 6–10 (2016).
2. Chiel, H. J., Ting, L. H., Ekeberg, O. & Hartmann, M. J. Z. The Brain in Its Body: Motor Control and Sensing in a Biomechanical Context. J. Neurosci.29, 12807–12814 (2009).
3. Ijspeert, A. J. Biorobotics: using robots to emulate and investigate agile locomotion. Science346, 196–203 (2014).
4. Holmes, P., Full, R. J., Koditschek, D. E. & Guckenheimer, J. The Dynamics of Legged Locomotion: Models , Analyses , and Challenges. Challenges48, 207–304 (2006).
5. Ritzmann, R. E., Quinn, R. D. & Fischer, M. S. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Struct. Dev.33, 361–379 (2004).
6. van Griethuijsen, L. I. & Trimmer, B. A. Locomotion in caterpillars. Biol. Rev.89, 656–670 (2014).
7. Wessnitzer, J. & Webb, B. H. Multimodal sensory integration in insects — towards insect brain control architectures. Bioinspir. Biomim.1, 63–75 (2006).
8. Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Insect Sci.15, 27–39 (2016).
9. Webb, B. Robots with insect brains. Science (80-. ).368, 244–245 (2020).
10. Alexander, R. M. The Gaits of Bipedal and Quadrupedal Animals. Int. J. Rob. Res.3, 49–59 (1984).
11. Alexander, R. M. Optimization and gaits in the locomotion of vertebrates. Physiol. Rev.69, 1199–1227 (1989).
12. Biewener, A. A. Animals as ‘Mature Technology’. Science (80-. ).333, 938–938 (2011).
13. Chiel, H. J. & Beer, R. D. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci.20, 553–7 (1997).
14. Beer, R. D., Quinn, R. D., Chiel, H. J. & Ritzmann, R. E. Biologically Inspired Approaches to Robotics. Commun. ACM40, (1997).
15. Ting, L. H. et al. Neuromechanical Principles Underlying Movement Modularity and Their Implications for Rehabilitation. Neuron86, 38–54 (2015).
16. Cruse, H. What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci.13, 15–21 (1990).
17. Schilling, M., Hoinville, T., Schmitz, J. & Cruse, H. Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern.107, 397–419 (2013).
18. Daun-Gruhn, S. & Büschges, A. From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol. Cybern. 71–88 (2011). doi:10.1007/s00422-011-0446-6
19. Ayali, A. et al. The comparative investigation of the stick insect and cockroach models in the study of insect locomotion. Curr. Opin. Insect Sci.12, 1–10 (2015).
20. Full, R. J. & Tu, M. S. Mechanics of six-legged runners. J. Exp. Biol.148, 129–46 (1990).
21. Ayali, A. et al. Sensory feedback in cockroach locomotion: current knowledge and open questions. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol.201, 841–850 (2015).
22. Hooper, S. L. Body size and the neural control of movement. Curr. Biol.22, R318–R322 (2012).
23. Hooper, S. L. & Büschges, A. Neurobiology of motor control: Fundamental concepts and new directions. Archivos de Neurociencias24, (2017).
24. Hooper, S. L. & DiCaprio, R. A. Crustacean Motor Pattern Generator Networks. NeuroSignals13, 50–69 (2004).
25. Marder, E. Neuromodulation of Neuronal Circuits: Back to the Future. Neuron76, 1–11 (2012).
26. Büschges, A. & Borgmann, A. Network modularity: Back to the future in motor control. Curr. Biol.23, 936–938 (2013).
27. Büschges, A. & Gruhn, M. Mechanosensory Feedback in Walking: From Joint Control to Locomotor Patterns. Advances in Insect Physiology34, (2007).
28. Büschges, A., Scholz, H. & El Manira, A. New moves in motor control. Curr. Biol.21, R513-24 (2011).
29. Mantziaris, C. et al. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect. J. Neurophysiol.49, jn.00321.2017 (2017).
30. Burrows, M. Local circuits for the control of leg movements in an insect. Trends Neurosci.15, 226–232 (1992).
31. Dürr, V. et al. Integrative Biomimetics of Autonomous Hexapedal Locomotion. Front. Neurorobot.13, 1–32 (2019).
32. Homberg, U. In search of the sky compass in the insect brain. Naturwissenschaften91, 199–208 (2004).
33. Pfeiffer, K. & Homberg, U. Organization and functional roles of the central complex in the insect brain. Annu. Rev. Entomol.59, 165–84 (2014).
34. Ito, K. et al. A systematic nomenclature for the insect brain. Neuron81, 755–765 (2014).
35. Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M. & el Jundi, B. Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B. Biol. Sci.366, 680–687 (2011).
36. Turner-Evans, D. B. & Jayaraman, V. The insect central complex. Curr. Biol.26, R453–R457 (2016).
37. Field, L. H. & Matheson, T. Chordotonal Organs of Insects. Adv. In Insect Phys.27, (1998).
38. Ritzmann, R. E. & Zill, S. N. Control of Locomotion in Hexapods. 1, 1–26 (2017).
39. Ritzmann, R. E. et al. Deciding which way to go: How do insects alter movements to negotiate barriers? Front. Neurosci.6, 1–10 (2012).
40. Varga, A. G., Kathman, N. D., Martin, J. P., Guo, P. & Ritzmann, R. E. Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control. Front. Behav. Neurosci.11, (2017).
41. Tuthill, J. C. & Azim, E. Proprioception. Curr. Biol.28, R193–R194 (2018).
42. Tuthill, J. C. & Wilson, R. I. Mechanosensation and Adaptive Motor Control in Insects. Curr. Biol.26, R1022–R1038 (2016).
43. Zill, S. N., Schmitz, J. & Büschges, A. Load sensing and control of posture and locomotion. Arthropod Struct. Dev.33, 273–86 (2004).
44. Zill, S. N. & Seyfarth, E.-A. Exoskeletal Sensors for Walking. Sci. Am.275, 86–90 (1996).
45. Delcomyn F, Nelson ME, Cocatre-Zilgien JH (1996) Sense organs of insect legs and the selection of sensors for agile walking robots. International Journal of Robotics Research, 15(2):113–127. https://doi.org/10.1177/027836499601500201
46. Graham D (1985) Pattern and Control of Walking in Insects. Advances in Insect Physiology, 18(C), 31–140. https://doi.org/10.1016/S0065-2806(08)60039-9
Ache J and Bueschges A (2025) Motor control on the move: from insights in insects to general mechanisms. Physiological Reviews. https://doi.org/10.1152/physrev.00009.2024